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Abstract. We discuss some generalities about the spin gap in cuprate superconductors and,
in detail, how it arises from the interlayer picture. It can be thought of as spinon (uncharged)
pairing, which occurs independently at each point of the 2D Fermi surface because of the
momentum selection rule on interlayer superexchange and pair tunnelling interactions. Some
predictions can be made.

The problem with the spin gap [1] is that there are too many right ways to understand it
within the interlayer theory [2], not too few: when one realizes what is going on it seems
all too obvious in several ways that one should have known all along.

(i) The most obvious is spinon pairing. We have realized all along that the normal state
has charge–spin separation, so why did we not expect two pairings, one for spin and the
second for charge?

(ii) Also obvious is that there is no phase transition, hardly even a crossover. So the
gap opens without change of symmetry or condensation. It must be not a self-consistent
mean field but a property of the separate Fermi surface excitations.

(iii) Finally, when one looks at the interlayer theory and takes it seriously, one realizes
that the phenomenon jumps out at you and is a trivial consequence of the interlayer
interaction. The Strong–Anderson [3] model is not a complete theory, but can be used
to calculateχ(T ), for instance.

Let me start, then, in the inverse of chronological order and try to make the synthetic
argument first. We start from the fact that every experimental, computational and theoretical
bit of evidence we have supports the dogma that the 2D interacting electron gas in the
cuprates is a liquid of fermions with a Fermi surface, with little or no tendency towards
superconductivity or to exhibit antiferromagnetism, once it is metallic—that is, there is no
clear indication of ‘antiferromagnetic spin fluctuations’, as relatively soft bosonic modes,
in the isolated plane. Rather, in the plane the magnetic interaction modifies the elementary
excitation spectrum as it does in the ferromagnetic case. The symmetry of this state is the
Haldane–Houghton [4] Fermi liquid symmetry (U(2))Z = (U(1) × SU(2))Z, one ofZ for
each point on the Fermi surface. This large symmetry is the general description of a liquid
of fermions with a Fermi surface, which is necessarily a surface ink-space on which the
fermion lifetime becomes infinitely long in the limit as one approaches the surface; hence
particles at the surface are conserved. Every point on the Fermi surface is independent, and
charge and spin are separately conserved. The article shows that this description includes,
but is not confined to, the Landau Fermi liquid. For the Fermi liquid, U(2) applies: the
two spin components are uncoupled; but the basic symmetry is spin and charge separately
conserved, in the general case.
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Our theory [7] postulates that in fact the U(2)is broken into U(1)× SU(2) with the
charge and spin excitations having different Fermi velocities and the charge also having
anomalous dimension, namely, the charge bosons are a Luttinger liquid; but this does not
change the symmetry argument. What is little realized is that the spin excitations arealways
describable as spinons, even for free electrons,

ψ∗
k̂
(r) ' s+

k̂
(r) eiθk̂(r).

The spin part is always a spinon; the charge is a bosonized Luttinger liquid. This, then,
is our high-temperature, high-energy state above temperatures and energies at which the
interplane interactions come into play.

Spinons in 2D are paired but gapless. What the nonexistence of a phase transition when
we lowerT to the interplanar scale tells us is that the spin gap state has the same symmetry.
It must leave intact the crucial fact of Fermi or Luttinger liquids: the independence of
different Fermi surface points. Then all that can happen is that the spectrum at each point
changes and the simplest way for that to happen is for the spinon to acquire a ‘mass’, that
is, the spinons which used to have a free-electron-like linear spectrum

vs

(
k − kF

)
or vs sin

(
π

2

(k − kF )

kF

)
to open a gap and have energies

E2 = 12(k̂) + v2
s

(
k − kF

)2
. (1)

This is possible because of the peculiar nature of spinons, that they are BCS quasi-particle-
like even in the normal state (as shown long ago by Rokshar [5]). That is, they are
semions, or Majorana fermions, which have no true antiparticles (we use the convention
−k = −k, −σ andk = k, σ )

s+
k = s−k sk = s+

−k

so that the Hamiltonian for free spinons may be written

vs

(
k − kF

)(
s+
k s+

−k + s−ksk

)
(2)

just as well as it can in terms ofs+
k sk and it isnot a symmetry changeto add a term

1ks
+
k s+

−k.

Spinons are always effectively paired [6]. It is natural that spinons are more easily paired in
the underdoped region, because the spinon velocity becomes progressively lower (J smaller)
as we approach the Mott insulator; therefore the density of states is higher,χpair larger, on
the underdoped side.

Finally, let me make one last remark of a synthetic, rather than analytical, nature.
As I have already said, the basic description of either a Fermi or a Luttinger liquid is
the independence of different Fermi surface points. If we are to go smoothly from a
two-dimensional electron liquid to a gapped statewithout change of symmetry—without
introducing any new correlations—we must do so without coupling the different Fermi
surface points; that is, we need interactions which conserve two-dimensional momentakx

andky . There is only one source of such interactions, namely the interlayer tunnelling

HIL =
∑

k,σ,i,j

t⊥(k)c+
kiσ ckjσ (3)
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which, in second order, leads to two types of interlayer coupling: pair tunnelling

HPT = λJ (k)
∑

(ij),k,k′
c+
k↑ic

+
−k′↓ic−k′↓j ck↑j (4)

and superexchange

HSE = λS(k)
∑

(ij)k,k′
c+
k↑ic

+
−k′↓j c−k′↓ick↑j (5)

(in both, k′ ' k) which represent exchange of charge and spin, respectively, between two
layers. The empirical (and theoretical) fact that coherent single-particle hopping does not
occur in the cuprates leaves these as the two second-order terms which can lead to coherent
interactions—such as those we are seeking—between two layers.

It is important to recognize that (4) and (5) have one extra conservation relative to
conventional interactions. This seems to be very difficult for many theorists to grasp.

Equation (5) does not involve any charge exchange between planes and hence can be
thought of as an exchange of a spinon pair, if one likes, but, as we shall see, it is formally
unnecessary to write it in terms of spinons. Equation (4) only conserves the total charge of
the two planes and hence is not a true spinon operator at all. Nevertheless, we find that (4)
and (5) together can be described in a sense as pairing spinon states [7].

This superexchange interaction does not much resemble that used by Millis and Monien
[1], neither does it have anything to do with theJ of the t–J model. Superexchange occurs
as a result of frustrated kinetic energy and the kinetic energy which is frustrated in the
cuprate layer compounds is only thec axis kinetic energyt⊥. These systems are very like
Mott insulators in one of three spatial dimensions and they exhibit superexchange in that
dimension, but they retain no Mott character in the two dimensions of the planes.

It is an unpublished conjecture of Baskaran thatλS/λJ increases as we approach the
insulating phase, namely, asα, the Fermi surface exponent, increases. This may be one
other reason why underdoped materials exhibit the spin gap.

Now, finally, let us tackle the calculational problem. At this point we have to stop
talking in generalities and make some rather severe assumptions in order to make progress.
They seem innocuous and are quite standard in conventional BCS theory, but here we have
no particular reason to believe that they will serve as anything better than a rough guide.
These assumptions are the following. (i) The Schrieffer pairing condition, namely, we use
only the BCS reduced interaction−k′ = −k. This is justified at high enoughT by the
fact that a given statek can only pair with one other−k′ to give a quasi-coherent matrix
element; our picture of the kind of process involved is that a transition to a high-energy state
intervenes between two low-energy states which are connected by two—and only two—
single-particle tunnelling processes,ka → kb and−kb → −ka. It is perhaps best to think of
the pairing as alwaysk, −k but with the centre of mass momentum thermally fluctuating.
(ii) More orthodox but more serious, we neglect|vc − vs | and treatc+

k as though it were an
eigenoperation; that is

HK =
∑

k

εknk. (6)

Actually we use the Nambu–PWA form

HK(k) = εk

(
nk + n−k − 1

) = εkτ3k.

Now we have a straightforward Hamiltonian which is trivially diagonalized, because it
separates into separate Hamiltonians for everyk:

H =
∑

k

Hk
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Hk = HK(k) + λjc
+
k1c

+
−k1c−k2ck2 + 1 ↔ 2 + λSc

+
k1c

+
−k2c

+
−k1ck2

(here we use the conventionk = k ↑ −k = −k ↓). The first attempt was made by Strong
and Anderson neglectingλs and this leads to a beautiful spin gap. The kinetic energy
spectrum of the four fermions 1, 2,k and −k has 16= 24 states which are grouped into
five sets,ntot = 0, 1, 2, 3 and 4 (see figure 1). Of these only then = 2 states are affected
by the interactions and of these two will be split off byHJ and two byHS . In either case,
these gaps are completelyT -independent and are simply manifested as the individual states
drop out:

Z = 16 cosh4
(

βεk

2

)
+ 2

[
cosh

(
βλJ

) − 1
]

(because with the added ‘−1’ n = 2 states are at 0 energy).

Figure 1. (a) Free-particle levels. (b) Levels with interactions, showing the diagonalization of
the effective Hamiltonian.

χ for this case is

χ =
∫ ∞

−∞
dε

cosh2 βε/2

cosh4(βε/2) + 1
8[cosh(βJ ) − 1]

.

A second calculation may be carried out with both terms,λJ ' λS and the result is to split
out two levels rather than one and to replace1

8 by 1
4. This is the curve for susceptibility

that I show in figure 2 and it is not a bad fit to susceptibility data.
However, I am not totally convinced that this is the right formalism, although it may

be the right arithmetic. The reason it works seems clearly to me to be that we have picked
a form for the pairing Hamiltonian that connects states which are ‘neutral’—that is, only
the n = 2 states are connected to each other within thek manifold. However, in some
real sense these are states with the spinons paired but with no holon pairing—no charge
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Figure 2. The susceptibility–temperature curve.

pairing—at all, even though nominally different layers are connected. I think it is more
nearly valid to describe the correct state by re-writingHj + Hs as(HJ + HS

)
k

' c+
kec

+
−kec−kecke

wherec+
ke = (ck1+ck2)/

√
2. That is, the spin-gap state is a state in which spinons belonging

to theevenlinear combinations are paired, theodd unpaired. This has a strong relationship
to the Keimer neutron selection rule observed for the superconducting state [8]. Keimer has
begun neutron investigations on spin-gap material, but his results are completely preliminary.
I anticipate that he will see peaks at energies corresponding to the spin gap and that they
will satisfy his even↔ odd sum rule, which results from this pairing.

One consequence of the assumptions of a Fermi rather than a Luttinger liquid is the
T -independence of the spin gap. Actually, the broadening of single-particle states∝ kT

will damp out the spin gap whenkT > 1SG, as seems to be observed. However, at lowT ,
1SG will not vary with T . This has been a very preliminary account of this work, which
is emphatically in progress.
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